White light generation by resonant nonradiative energy transfer from epitaxial InGaN/GaN quantum wells to colloidal CdSe/ZnS core/shell quantum dots

نویسندگان

  • Sedat Nizamoglu
  • Emre Sari
  • Jong-Hyeob Baek
  • In-Hwan Lee
  • Hilmi Volkan Demir
چکیده

We propose and demonstrate white-light-generating nonradiative energy transfer (ET) from epitaxial quantum wells (QWs) to colloidal quantum dots (QDs) in their close proximity. This proof-of-concept hybrid colorconverting system consists of chemically synthesized red-emitting CdSe/ZnS core/shell heteronanocrystals intimately integrated on epitaxially grown cyanemitting InGaN/GaN QWs. The white light is generated by the collective luminescence of QWs and QDs, for which the dot emission is further increased by 63% with nonradiative ET, setting the operating point in the white region of CIE chromaticity diagram. Using cyan emission at 490 nm from the QWs and red emission at 650 nm from the nanocrystal (NC) luminophors, we obtain warm white light generation with a correlated color temperature of Tc = 3135K and tristimulus coordinates of (x, y)= (0.42, 0.39) in the white region. By analyzing the time-resolved radiative decay of these NC emitters in our hybrid system with a 16 ps time resolution, the luminescence kinetics reveals a fast ET with a rate of (2 ns)−1 using a multiexponential fit with χ2 = 1.0171. 4 Author to whom any correspondence should be addressed. New Journal of Physics 10 (2008) 123001 1367-2630/08/123001+10$30.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Resonant nonradiative energy transfer in CdSe/ZnS core/shell nanocrystal solids enhances hybrid white light emitting diodes.

We propose and demonstrate hybrid white light emitting diodes enhanced with resonant nonradiative energy transfer in CdSe/ZnS core/shell nanocrystal solids integrated on near-UV InGaN/GaN LEDs. We observe a relative quantum efficiency enhancement of 13.2 percent for the acceptor nanocrystals in the energy gradient mixed assembly, compared to the monodisperse phase. This enhancement is attribute...

متن کامل

Critical role of CdSe nanoplatelets in color-converting CdSe/ZnS nanocrystals for InGaN/GaN light-emitting diodes.

Here we report CdSe nanoplatelets that are incorporated into color-converting CdSe/ZnS nanocrystals for InGaN/GaN light-emitting diodes. The critical role of CdSe nanoplatelets as an exciton donor for the color conversion was experimentally investigated. The power conversion efficiency of the hybrid light-emitting diode was found to increase by 23% with the incorporation of the CdSe nanoplatele...

متن کامل

Warm-white light-emitting diodes integrated with colloidal quantum dots for high luminous efficacy and color rendering.

Warm-white LEDs (WLEDs) with high spectral quality and efficiency are required for lighting applications, but current experimental performances are limited. We report on nanocrystal quantum dot (NQD) hybridized WLEDs with high performance that exhibit a high luminous efficacy of optical radiation exceeding 350lm/W(opt) and a high color rendering index close to 90 at a low correlated color tempe...

متن کامل

Carrier density dependence of plasmon-enhanced nonradiative energy transfer in a hybrid quantum well-quantum dot structure.

An array of Ag nanoboxes fabricated by helium-ion lithography is used to demonstrate plasmon-enhanced nonradiative energy transfer in a hybrid quantum well-quantum dot structure. The nonradiative energy transfer, from an InGaN/GaN quantum well to CdSe/ZnS nanocrystal quantum dots embedded in an ~80 nm layer of PMMA, is investigated over a range of carrier densities within the quantum well. The ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008